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Convection driven by centrifugal buoyancy in a cylindrical fluid annulus cooled from 
the inside, heated from the outside, and rotating about its axis is described. While at 
high values of the dimensionless rotation parameter z convection rolls aligned with 
the axis are preferred, three-dimensional patterns of convection are introduced at 
low values of z through either the cross-roll instability or a subharmonic varicose 
instability. The instabilities are studied in terms of simple analytical relationships 
as well as through numerical methods based on the Galerkin scheme. Analytical 
expressions for the steady three-dimensional patterns induced by the instabilities are 
also derived. 

1. Introduction 
Thermal convection in a fluid layer heated from below in the presence of a 

parallel axis of rotation is readily realized in the annular gap between two coaxial 
rotating cylinders kept at different temperatures such that the density stratification 
is unstable with respect to the action of the centrifugal force. Since the density 
of fluids typically decreases with increasing temperature the temperature TI of the 
inner cylinder must be kept lower than the temperature T2 of the outer cylinder in 
order that the instability can occur. Ordinary gravity exerts a minimal influence on 
the laboratory experiment when the orientation of the cylindrical annulus is vertical 
(Busse & Carrigan 1974). 

Convection flows that are driven by buoyancy forces and which are oriented at 
a right angle with respect to the axis of rotation typically occur in the equatorial 
regions of the atmospheres of the major planets and of stars. Since the component 
of gravity parallel to the axis of rotation usually exerts only a minor influence, 
the equatorial type of convection is representative of the entire region outside the 
cylindrical surface touching at its equator an inner spherical boundary corresponding, 
for instance, to a planetary core. Models for convection in the atmospheres of the 
major planets that are based on the assumption of nearly two-dimensional columnar 
convection modes have been quite successful in explaining the band structures of 
Jupiter and Saturn (Busse 1976, 1983, 1988, 1994) and have motivated experimental 
and theoretical studies of columnar convection in the cylindrical annulus (Busse & 
Hood 1983; Azouni, Bolton & Busse 1984; Busse & Or 1986; Or & Busse 1987; 
Schnaubelt & Busse 1992). In all of these studies the limit of high rotation rates has 
been emphasized in which the nearly two-dimensional character is enforced by the 
approximate balance between Coriolis force and pressure gradient. The opposite limit 
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FIGURE 1. Geometrical configuration of the problem. 

of low Taylor numbers is of lesser interest for planetary applications, but deserves 
some attention for the explanation of laboratory observations. Three-dimensional 
convection flows have been observed (Busse & Carrigan 1974), but little attention has 
been devoted to them. In the present paper we plan to investigate the problem from a 
theoretical point of view using both a weakly nonlinear analysis based on amplitude 
equations and numerical computations based on the Galerkin method. Through these 
two complementary approaches the realization of two types of three-dimensional 
patterns will be demonstrated. 

The paper starts with a brief formulation of the basic equations in $2. In $3 the 
weakly nonlinear analysis will be formulated and two types of three-dimensional 
solutions will be considered in $54 and 5. Comparisons of the weakly nonlinear 
results with a numerical analysis of the fully nonlinear problem will be given in $6 for 
special values of the Prandtl number. The paper closes with an outlook on possible 
experimental realisations in the concluding section. 

2. Mathematical formulation of the problem 
We consider the fluid-filled gap between two coaxial co-rotating cylinders of length 

L with radii rl and r2, respectively, as shown in figure 1. We assume the limit of 
a large aspect ratio L/d where d = r2 - rl is the gap width. We also assume the 
small gap limit, d << rl,  which allows us to introduce a Cartesian coordinate system 
with the origin located in the middle of the gap and the z-coordinate directed in the 
radial direction of the unit vector k .  Since we use the centrifugal acceleration as our 
effective gravity, the latter is directed parallel to k. The y-direction is chosen in the 
direction of the unit vector j parallel to the axis of rotation. The cylinders are held 
at constant temperatures T1 and TZ with TI < T2. 

Using the general representation for the solenoidal velocity field u 

u = ii+v x (k  x V4) + v x ky, (1) 

where the bar indicates the average over the horizontal (x,y)-plane, we obtain the 
following equations for 4 and y by taking the z-components of the curlcurl and of 
the curl of the equations of motion: 
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P - l -  - V2 V2A24 - 2 z j . V A 2 y  + A2% = - k . V  x V x (u*Vu)P- ' ,  (2a)  [ :t 1 
2 z j * V A 2 4 +  P - l -  -V2 A2y = k - V  x ( u - V u ) P - ' ,  i i t  1 

with the horizontal Laplacian A2 = V2 - a2/az2.  Equation (2c)  represents the heat 
equation for the deviation % of the temperature field from the static solution. 

The mean flow fi is governed by the equation 

1 + V x k y )  P-' ,  
a 2  

[a- 
where Vz = V - k a / d z  is the horizontal nabla operator. The term horizontal is used 
here with respect to the effective gravity even though an experimental realization of 
the physical system in a laboratory may employ 'vertical' cylinders. The boundary 
conditions are given by 

1~ = 8 = 0 at z = k0.5. U i = $ = - =  a4 
i3Z 

( 3 )  

The length, time and temperature in equations (2) are measured in terms of [dl, [ d 2 / v ] ,  
and [( T2 - T1)/R], respectively. The dimensionless parameters are the Rayleigh 
number R ,  the Prandtl number P and the rotation parameter z defined by 

R = y( T2 - Tl )Q2(r l  + r2)d3/2v7c, P = V / K ,  z 3 Q d 2 / v ,  

where y, v and K are the thermal expansivity, the kinematic viscosity and the thermal 
diffusivity, respectively. The system derived here is identical to the Rayleigh-BCnard 
system with solid boundaries, when the rotation parameter vanishes. This property 
offers the opportunity of discussing the present system in comparison with the latter 
one. 

The linear problem which governs the stability boundaries of the basic state 
u = 8 = 0, is found by neglecting the right-hand sides of (2). The resulting linear 
system does not depend explicitly on x , y  and t .  We are thus led to the ansatz of 
the form X = X,(z) exp(i(ax + f ly)  + o t )  with X = (4, y ,  8). These solutions describe 
convection rolls with wavevectors q = (a,f l)  and growth rates o. 

Actually the linear stability analysis can be reduced to the stability problem of the 
Rayleigh-BCnard system, when we restrict it to the onset of monotonic modes, i.e. 
o = 0. This restriction is certainly justified in the case of small z which is of interest 
to us. Oscillatory modes of onset of convection can be expected for large values of z 
when inertial wave-like modes may become possible. For o = 0 equations. ( 2 )  with 
vanishing right-hand sides can be reduced to the equation 

with the boundary conditions 
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4 = 0  at z=&O.5. 

Thus the critical Rayleigh numbers can be calculated from the critical Rayleigh 
numbers RR~(I  q I) of the Rayleigh-Bhard system (cf. e.g. Busse 1971) according to 
the relationship 

The most unstable modes are axially oriented convection columns with q,, = (a,,O) = 
(3.11632,O). The onset occurs at R, = 1707.762. The linear and nonlinear two- 
dimensional properties of these modes are identical to those of the corr3sponding 
modes in Rayleigh-Bhard convection. We thus know that they bifurcate super- 
critically and a weakly nonlinear approach is possible to determine the convection 
amplitude at slightly supercritical values of R. 

3. Amplitude equations in the weakly nonlinear limit 
In the following sections we shall consider several patterns of convection in the 

weakly nonlinear limit of equations (2). For this purpose the solution vector X is 
expanded in powers of the amplitudes Ai of the contributing modes of convection: 

N 

x = C A ~ X ~  expfiq, - r )  + C AiAkX& exp(i(qi + qk) .Y> + h.0.t. ( 7 4  
i=-N iJc 

where the summation is extended over positive as well as negative subscripts i, k with 
the convention 

A-i = A;, 4-i = -qi, qi = (ai, pi). (7b) 

In order to allow for competing modes corresponding to different wave vectors q we 
shall assume the limit of small T~ such that terms of the order 22 will be considered 
on the same level as terms of the order I Ai 1’. After inserting expansion (7) into 
equations (2), solving the inhomogeneous ordinary differential equations in z for the 
vector functions Xk, we obtain as solvability conditions in the cubic order a system 
of amplitude equations of the form 

(8) 
for i = - N , .  . . , -1,1, .  . . , N 

where a weak time dependence of the amplitudes has been assumed and where the 
constants Mi are defined by 

and the more complex constants yik, qik[ are not given explicitly. The angular brackets 
in (9) indicate the spatial average over the fluid layer. Since deviations from the 
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Boussinesq approximation are not included in the present analysis and since symmet- 
ric boundary conditions are employed, the constants qikl vanish in the limit z = 0. 
For finite z, however, values of qikl  in proportion to arise whenever the vector sum 
q k  + ql - qi vanishes as indicated by the &function. 

In the special case of steady roll convection with q1 = (a,,O) the amplitude A1 of 

(10) 

YO (0.69942 - O.O0472P-' + 0.00832P-2)-' (11) 

(12) 

convection is given by 

where y11 = yo + z2yl + . . . is given in the limit z = 0 by 
A: = ( R  - & ) P Y l l  

according to Schluter, Lortz & Busse (1965) when the normalization condition 

Ro(qi)(ei I 4i l 2  4i) = 1 

is employed. 

4. Knot convection 
The simplest case of three-dimensional convection described by the system (8) of 

amplitude equations arises for two participating modes, the q-vectors of which are 
oriented at right angles: 

The amplitude equations (8) can be simplified in this case: 
41 = (@c, 01, 42 = (0, a,) (13) 

(14b) 
d 
dt 

M1 -A2 = ( R  - R, - 4z2 - 2 y 2 4  - 2Y21Ai)A2. 

The solution in the form of rolls (10) with A2 = 0 is a stable solution of (14) in the 
range & d R < I&. At the critical Rayleigh number &R for the onset of cross-roll 
disturbances 

Y21 for - < 1 
4z2 

1 - Y21/Yll Y11 
R C R = R c +  

a solution with finite amplitude A2 bifurcates and replaces the roll solution as the 
stable solution of the system (14). For z = 0, however, the condition y21 < 711 is not 
satisfied since 

~ 2 1  - Y I I  = 0.15901 + 0.08973P-I + 0.11661P-2 E ~ 0 ~ 1 1  

according to Busse (1971). When terms of the order T~ are taken into account we find 

Y21-Y11 =ao-a2z +... 

(16) 

(17) 
2 

Y11 

with a2 given in figure 2 as a function of the Prandtl number. Accordingly the 
cross-roll instability occurs when I z I exceeds a critical value zc: 

I z 12 z, = (ao/a2)''* (18) 

Obviously the results (15), (17), (18) are not rigorous in any mathematical sense. 
which varies between 7 for low Prandtl numbers and 3.6 in the limit P + co. 
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P 
FIGURE 2. The coefficients a2 (solid line), bl (dashed line) and c2 (dotted line) as functions of the 

Prandtl number P .  The coefficients are defined in equations (17), (19). 

But since the change in the critical value (6) of the Rayleigh number is still a 
small fraction of R, for z = z, and since the stability boundary (15) agrees quite 
well with the numerical solutions of the fully nonlinear equations to be discussed 
in 96, we feel that the analytical result provides a good approximation. The fair 
agreement encourages us to go a step further and to calculate the amplitudes At ,  A2 
of the steady three-dimensional solution describing knot convection. For this pur- 
pose the remaining coefficients y12 and y22 must be determined. Using the defini- 
tion 

we have plotted b2 and c2 as function of P in figure 2. Since c2 is rather small 
we can neglect it to a first approximation and arrive at the solution for knot 
convection : 

(20a) I A1 12= [(a0 + b2z2)(R - R, - 4z2) - 4z2]/D, 

I A2 1 2 =  [(a0 - a2z2)(R - &) + 4z2]/D, 

with D = 2711 [(l + a0 + b2z2)(1 + a0 - a2z2) - 13. 

5. Subharmonic varicose instability and transition to hexaroll convection 
In this section we consider the simplest case of the system (8) of amplitude equations 

in which the terms bilinear in Ai contribute. For this purpose three q-vectors of the 
form q1 = (a,,0),q2 = (a,/2,p),q3 = (ac/2,-p) will be chosen where p is given by 
J3ac/2,  at least in the case z = 0. In the latter case hexagonal convection in its two 
manifestations of up- and down-hexagons corresponds to steady - but unstable - 
solutions of equations (8). Here we investigate the possibility that similar solutions 
may become stable for finite values of z. For this purpose equations (8) can be 
rewritten in the form 
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The stability analysis of the steady roll solution (10) with respect to infinitesimal 
disturbances A j  = Aj  exp{ot}, j = 2,3 yields for the growth rate 

M2CJ = f Z V 2 K R  - R,)/y1111/2 + ( R  - - Y21/Yll) - 3T2. (22) 

R < R < R +  (23a) 

(23b) 

1; > 12hOYll (24) 

Accordingly the two-dimensional roll solution is unstable in the range 

with 
2 

R+ - R, { 12/2ho~:? f (1f/4h&ii - 3/ho) l i 2 }  T~ 

provided the expression under the square root is positive, i.e. 

where ho is defined by 

yij-y11 = hoy11(1-6ij)+.. . (0.29127+0.08147P-' +0.08933P-2)(1-6ij)+. . . (25) 

Here we have neglected contributions of the order T~ to y11 since they are of higher 
order than those retained in expressions (23). The evaluation of inequality (24) 
demonstrates that it is satisfied for P > 2.95. In figure 3 we have plotted Rk - R, as 
function of the Prandtl number. Also shown in that figure are the coefficients ql and 
12. 

In order to distinguish the new instability from the hexagon instability caused 
by deviations from the Boussinesq approximation (Busse 1967) we have called it 
the subharmonic varicose instability. Indeed, the evolution of this instability does 
not cause a transition to a hexagon solution, but instead it just causes a varicose 
deformation of the roll pattern which shifts by half a wavelength along the axis of 
the rolls from one pair of rolls to the next. Based on the solution of equations (21) 
such a hexaroll solution has been plotted in figure 4. 

In order to derive an expression for the hexaroll solution we assume that Al is real 
and given by the expression (10) to a first approximation. Equations (21b,c) can then 
be solved for small real values of A2 = i 1 3 ,  

(26) 

where CJH denotes expression (22) for CJ in the case of the positive sign. The maximum 
value of CJH and thus the maximum amplitude A2 is obtained for 

(27) 

But even at this Rayleigh number the ratio I &/A1 I stays less than 0.5. For figure 

A; = mfM2(Yll + y21)-' 

R, = R, + 12/2hoy:;2 
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RGURE 4. Lines of constant azimuthal velocity i - u  in the plane z = 0.4 for the hexaroll solution at 
R = R,,,. Lines with positive (negative) velocity are solid (dashed) for positive T .  

4 R = R, has been used. At other values R within that interval the primary roll 
component will dominate even more strongly. 

6.  Numerical analysis 
The numerical analysis of the stability of rolls based on equations (2) follows 

previous work on the transitions from two- to three-dimensional convection flows in 
a layer heated from below with horizontal anisotropies. Examples are the instabilities 
of longitudinal rolls in the presence of a mean shear (Clever, Busse & Kelly 1977; 
Clever & Busse 1989, 1991) or in the presence of a horizontal magnetic field (Busse 
& Clever 1983, 1989). The latter example is particularly close to the present situation 
since no advection effects due to mean flows are involved. 

Using the representation for the velocity field u we describe two-dimensional rolls 
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FIGURE 5. Approximate stability boundaries as a function R and z for the Prandtl numbers 4,7 
and 1000 according to criteria (15) (solid lines) and (23) (dashed lines). Rolls with the critical 
wavenumber clc are unstable beyond the solid lines with respect to growing cross-roll disturbances 
and inside the region bounded by the two sets of dashed lines they are unstable with respect to the 
subharmonic varicose instability. In the latter case the unstable region spreads in both directions 
with increasing Prandtl number, and the region of unstable rolls also increases with P in the case 
of the knot instability. The dotted line represents the numerically determined stability boundary for 
P =7.  

t 

in the form 

8 = bl, cos laxx sin nx(z + i), (28b) 
Ln 

where gn(z) are the Chandrasekhar functions (Chandrasekhar 1961) which satisfy the 
boundary conditions 4 = 8 4 / a z  = 0 at z = &;. The stability equations for general 
infinitesimal disturbances can then be solved with the ansatz 

6 = &n exp(i(la, + d)x + iby + ot}gn(z), 

Z.1, exp{i(la, + d)x + iby + ot} sin nn(z + i), 

b l n  exp{i(la, + d)x + iby + ot} sin nx(z + i) 

(294 

(29b) 

(29c) 

where the growth rate o can be determined as the egenvalue in the system of linear 
homogeneous equations for the coefficients 2iln,Z.ln, bl,. Whenever there exists as a 
function of the wavenumbers b,d an eigenvalue o with positive real part, the steady 
solution (26) characterized by the parameters R, P ,  a, will be considered unstable. 
Otherwise it is regarded as stable. 

The stability boundaries obtained through this procedure are shown in figure 5 .  As 
expected according to the analytical theory outlined above, the most strongly growing 
disturbances at low Rayleigh numbers close to R, correspond to either d = 0,b = a, 

I,, 

@ = 

8 = 

1,n 

1,n 
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FIGURE 6. Stability regions for rolls with the wavenumber a,. Rolls are unstable with respect to 
the subharmonic varicose instability in the region between the two (or above the) dotted lines (the 
analytical criterion (23) corresponds to the dash-dotted lines). They are also unstable with respect to 
the knot instability (cross-roll disturbances) indicated by the dashed line. The approximate criterion 
(15) is indicated by the long-dash-short-dash line. Finally the onset of skewed varicose disturbances 
is indicated by the solid line. (a) P = 7, (b )  P = 0.71, (c) P = 1000. 

(cross-roll disturbances) or to the subharmonic skewed varicose disturbances with 
d = 4 2 , b  = 8 4 2 .  The rather sudden onset of growing cross-roll disturbances 
with increasing rotation parameter is clearly exhibited in figure 5. In figure 6(a) the 
stability boundary is continued at higher Rayleigh number to the limit T + 0 where 
the instability is known to lead to knot convection (Clever & Busse 1989). Since a 
similar convection pattern is expected in the case of finite z the name knot convection 
has been retained. 

While the criterion (15) provides only a rough approximation for the knot stability 
boundary, the agreement between the analytical expression (23) and the numerical 
results becomes exact when the critical value R, of the Rayleigh number is approached 
as shown in figure 6(a) .  For Prandtl numbers less than 2.95 rolls become stable in 
the neighbourhood of R = &, but the subharmonic varicose instability continues to 
restrict the stability of rolls at somewhat higher Rayleigh numbers as is evident from 



Three-dimensional convection driven by centrifugal buoyancy 381 

stability boundaries for P = 0.71 which are shown in figure 6(b). For completeness 
the stability boundary for the onset of the skewed varicose instability (Busse & Clever 
1979) is also shown in figure 6(a,b). It is preceded by the onset of the instabilities 
discussed above except for very small values of z. 

From figure 6(a,b) it is not quite clear whether the knot instability ever occurs 
below the onset of the subharmonic varicose instability for z 2 10. Both stability 
boundaries are surprisingly close in this regime for Prandtl numbers of the order one 
and larger. The detailed computations for the case P = 1000 shown in figure 6(c) 
demonstrate, however, that the onset of cross-roll disturbances precedes the onset of 
the subharmonic varicose instability for a finite range of z. 

7. Concluding remarks 
For the experimental investigation of the instabilities considered in this paper and 

the three-dimensional convection flows they generate, a highly viscous fluid contained 
in the narrow annular gap between two coaxial cylinders should be used. The 
high viscosity will keep the parameter sufficiently small even in the limit when 
the cylindrical apparatus rotates about its vertical axis rather rapidly, such that the 
centrifugal force greatly exceeds gravity. Visualizations of the convection patterns 
can be done with the use of KalliroscopeR platelets immersed in the fluid. The 
orientation of the platelets is very sensitive to the shear and has been used in earlier 
experiments to determine the onset of convection (Busse & Carrigan, 1974). No 
report of experimental observations of this kind in the relevant parameter regime are 
known to the authors and it is planned for this reason to undertake a laboratory 
experiment in the future. 

Both instabilities investigated in the paper are caused by the introduction of a z -  
component of the vorticity. This component of vorticity is at most of order A3 in the 
isotropic Rayleigh-Bdnard layer when deviations of the order A of the wavenumber 
from the critical value a, are admitted, where A denotes the amplitude of convection 
(see, for example, Schluter et al. 1965). In the present case this component is of 
the order Az and is thus capable of introducing a new instability even at the critical 
Rayleigh number in the case of subharmonic varicose disturbances. 

The research reported in this paper has been supported in part by the Deutsche 
Forschungsgemeinschaft (M.A.) and by the US National Science Foundation (R.M.C.) 
and by a NATO travel grant (F.H.B.). 
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